Prospects for Petascale Climate Modeling:
Can Kilo-Processors, Exa-Flops and Peta-B ¥
Make a Difference in Predicting Eartl
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Prefix Symbol Power of 10 Power of 2
(-byte)

yocto- y 10 -
zepto- z 10 -
at o- a 108 ~
femto- f 10" -
pico- p 102 -
nano- n 10 -
micro- m 10° -
milli - m 10° -
centi- C 10 -
deci- d 10™ -

- 10° -
deka D 10* -
hecto- h 10° ~
kil o- k or K 10° 2'° processors (~100K-cores)
mega- M 10° 2%
giga- G 10° 2%
tera- T 10" 20
peta- P 10" 2> bytes
exa- E 10" 2% flops *
Zett a- Z 10° 27°
yotta- Y 10% 2%

* e.g. Cray XT5 (kraken) at NICS: 607 peak teraflops * 86400 sec/day = 50 (peak) exaflops/day
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Climate change is most difficult and important problem
Scientific consensus: humans contribute to climate change

World, urgently engaged in global mitigation and regional adaptation strategies, needs detailed
regional information

IPCC AR4: considerable uncertainty in predictions of magnitude of global change

... and uncertainties in regional climate are even bigger

Climate prediction is very computationally demanding

Climate spatial scales span 10 decades, but current models resolve less than 4 decades
Within 6 years, peak capability of 100 petaflops, 10’ computing units

Parallel computation means new software, algorithms and models

... and new methods in workflow management, data management, and visualization



1. Climate change is arguably the most
difficult and most important problem
facing governments, industries and
societies across the Earth.
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Cost of Climate Change

« Conseguences of climate change estimated at
several % of world GDP by mid- to late-21st century

« Mitigation efforts to reduce impacts of climate change
estimated at 1% of world GDP

(world GDP in 2007: €34 trillion)

Stern Report, 2007
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2. A scientific consensus has emerged that
human activities are contributing to
climate change.



- models using only natural forcings == observations

- models using both natural and anthropogenic forcings ©IPCC 2007: WG1-AR4
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3. The world community is now urgently
engaged in discussion of strategies for
global mitigation of, and regional
adaptation to, climate change, which
require detailed regional information
such as iIs provided by climate models.
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Figure 12.3. Key winerabilities of European systems and sectors to climate change during the 21st century for the main biogeographic regions of
Europe (EEA, 2004a): TU: Tundra, pale turquoise. BO: Boreal, dark blue. AT: Atlantic, light biue. CE: Central, green; includes the Pannonian Region.
MT: Mountains, purple. ME: Mediterranean, orange; includes the Black Sea region. ST: Steppe, cream. SLR: sea-level nise. NAO:

North Atlantic Oscillation. Copynght EEA, Copenhagen. http://www.eea.europa.eu
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Summer 2003
European Heat Wave
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. Figure 12.4. Characteristics of the summer 2003 heatwave (adapted
(d) Climate Simulation | from Schér et al., 2004). (a) JJA temperature anomaly with respect to
> Future 189617 to 1990. (b) to (d): JJA temperatures for Switzerland observed
§ 2071.2100 during 1864 to 2003 (b), simulated using a regional climate model for
g ‘ | the period 1967 to 1990 (c) and simulated for 2071 to 2100 under the
, 5l \ A2 scenario using boundary data from the HadAM3H GCM (d). In
- -r"‘/ | | \y paneis (b) to (d): the black line shows the theoretical frequency
’ distribution of mean summer temperature for the time-period
" 16 18 20 2 24 2 28 considered, and the vertical blue and red bars show the mean summer
Temperature (*°C) temperature for individual years. Reprinted by permission from

Macmillan Publishers Ltd. [Nature] (Schér et al., 2004), copyright 2004.
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4. As reflected in the IPCC Fourth
Assessment Report, there continues to be
considerable uncertainty in predictions of
the magnitude of global warming.
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Climate Model Fidelity and Projections of Climate Change

J. Shukla, T. DelSole, M. Fennessy, J. Kinter and D. Paolino
Geophys. Research Letters, 33, doi10.1029/2005GL025579, 2006
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Clouds: Still the Largest
Source of Uncertainty

a) Cloud radiative forcing
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5. 0n the regional level, uncertainties in
regional climate change, e.g. whether we
can expect more floods or more droughts,
more storms or longer periods of
unsettled weather, are even bigger.
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Figure 12.1. Change in annual river runoff between the 1961-1990 baseline period and two future time slices (2020s and 2070s) for the A2 scenarios
(Alcamo et al., 2007).
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What will be the time-evolving regional/local climate
changes (from now until 2099 and beyond) to which
human societies will have to adapt?

= Post-AR4 climate change modeling paradigm:

« Decadal Prediction « Longer Term Projections

New mitigation scenarios to
address processes and
feedbacks, e.g. carbon cycle

« Better regional predictions of
weather and climate

extremes _
» Higher resolution, initialized * Earth system models with
J ution, Intermediate resolution
AOGCMs . L
_ _ « To advise mitigation and
* To advise adaptation adaptation decisions
decisions
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6. Climate prediction is one of the most
computationally demanding problems.



Weather - Climate Continuum

 Instead of predicting weather 15 days in
advance, need to predict climate 10 years Iin

advance
* Initial value problem at all lead-time scales

— Need to initialize entire physical climate system
(atmosphere, ocean, ice, land surface)

— Need to assimilate Earth observations
« Multi-scale, multi-physics problem at all lead-
time scales

=—— Center of Ocean-Land-
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Longer Runs
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Atmosphere




Changes in the Atmosphere: Changes in the
Composition, Circulation Hydrological Cycle
Changes in
Solar Inputs )
Clouds
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Land Surface

Changes in the Cryosphere:
Snow, Frozen Ground, Sea Ice, Ice Sheets, Glaciers

| Sealce =
Hydrosphere:
Ocean |
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Hydrosphere:
. Rivers & Lakes

Ice-Ocean Coupling

Changes in the Ocean:

Changes in/on the Land Surface:
Circulation, Sea Level, Biogeochemistry

Orography, Land Use, Vegetation, Ecosystems




Ensembles

Deterministic prediction

Verification

Ensemble forecast of the French / German storms (surface pressure)
Start date 24 December 1999 : Forecast time T+42 hours
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Courtesy of T. Palmer (ECMWF)




Multi-Model Ensembles

CMIP3 archive at PCMDI:

Picntrl PDcntrl

SRESA1B | SRESB1 [ 1%to2x 1%todx | Slab cntl 2xC02 AMIP

BCC-CM1, China
BCCR-BCM2.0, Norway
CCSM3, UsA
CGCM3.1(T47), Canada
CGCM3.1(T63), Canada
CNRM-CM3, France
CSIRO-Mk3.0, Australia
CSIRO-Mk3.5, Australia
ECHAMS/MPI-OM, Germany
ECHO-G, Germany/Korea
FGOALS-g1.0, China
GFDL-CM2.0, USA
GFDL-CM2.1, USA
GISS-AOM, USA
GISS-EH, USA
GISS-ER, USA
INGV-SXG, Italy
INM-CM3.0, Russia
IPSL-CM4, France
MIROC3.2(hires), Japan
MIROC3.2{medres), Japan
MRI-CGCM2.3.2, Japan
PCM, USA
UKMO-HadCM3, UK
UKMO-HadGEM1, UK

--liﬁll:
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7. The spatial scales of physical processes
Important to climate span almost 10 decades;
from the global (10’ m) to the viscous (102
m), but even the largest climate models
resolve less than 4 decades.






Spatial
esolution...

3 IS requwed for:
= Accuracy
Representation of features
.= Representation of processes
= Scale interaction

d‘rlves computational demand
il



Topogrophy (m; res = 20km)
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CCSM
CAM @ 0.5°+ POP @ 1.0°
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Climate Problem: Predicting
Tropical Cyclone Characteristics

= Frequency
= Regions affected (tracks)
= |[ntensity and areal extent (wind, waves, surge)
= Tornadoes!!
= Requires:
= High model resolution
= |[mproved physics

» Cloud processes
= Air-sea exchange

= Combination of model and statistics

Courtesy of Greg Holland - Sep 2007
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Courtesy of P. Fox (NCAR)
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Accuracy / Resolution
Issues In the Atmosphere

= Convective parameterization - when does it help? hurt?

= Convective parameterization tends to reduce strength of
tropical storms, cloud time scale is key parameter; may be
better off without CU parameterization (GMAO finding)

= 35-km resolution needed to get seasonal cycle of tropical
storm frequency (NCEP finding)

= Crossover resolution at which no CU parameterization is
better may be ~ 20 km (GFDL hypothesis)

= Evidence that cloud-resolving models are qualitatively
different ...






Global Cloud-System
Resolving Model (NICAM)

Snapshot of 00UTC31Dec2006 cloud distribution in satellite
image (left) and 3.5-km NICAM simulation (right)

Miura et al., 2007
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MJO Simulation
(Winter, 20-100 bandpass)
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Accuracy / Resolution
Issues In the Atmosphere

50-km or even 25-km resolution is needed to get statistics
of extratropical winter storms right (ECMWEF finding)

17-km resolution may be required to get important extreme
events in extratropics right (ECMWEF finding)



Mean Climate - Tropical mean SST, precipitation
Equatorial Pacific SST annual cycle

NINO3.4 - Power spectrum, amplitude, phase w.r.t.
annual cycle, correlation with wind stress, correlation
with global SST

ENSO events - Duration, propagation of SST
anomalies, evolution of tropical Pacific thermocline

Linkage to Subseasonal Variability

Teleconnections - ENSO-monsoon correlation, mid-
latitude stationary waves



ENSO Simulation
NINO3.4 (5S-5N,170W-120W)
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Courtesy Cristiana Stan, COLA
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Global Atmospheric Models Horizontal Resolution
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Global Atmospheric Models Horizontal Resolution
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Typical global ocean models used for climate
prediction “permit” eddies, at best

To “resolve” eddies, need grid spacing less than
10 km (ocean modelers achieved this ~10 years

ago)

What is the impact of resolving the ocean eddies?
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8. It I1s possible that, within the next 6 years,
high-end computers will have

— peak capability of 100 petaflops (107 floating
point operations persecond)

— Tens of millions of computing units



Aggregate Computing Capability Still Rising
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Feature Size Decreasing: -14% yr-
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Clock Speed - Flattening

« Chip density increasing
@ 2X per 2 years
— Clock speed is not
— Cores/chip doubling
instead
« Hidden parallelism - little
or none remaining
potential

« — Parallelism via
software
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Courtesy Rich Loft, NCAR
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Power Density Rising Relentlessly

Nuclear Reactor

Hot plate

150 1p 07n 05 0354 0251 0.18u 0.13p 0.1p 007

* 80% increase in power density/generation
* Voltage scales by ~0.8
» 225% increase in current consumption/unit area !

Source: Shekhar Borkar. Intel

/ﬁ_— Center of Ocean-Land-
GCOT, AAtmosphere Studies Jim Kinter - ICTP High Resolution Climate Modeling Workshop - Trieste, Italy - 13 August 2009




Memory: Hitting a Wall

The von Neumann Bottleneck
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Understanding Failures In
Petascale Computers
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Figure 4. The expected growth in failure rate (left) and decrease in MTTI (right), assuming that the
number of cores per socket grows by a factor of 2 every 18, 24 and 30 months, respectively, and the
number of sockets increases to stay on top500.org.

Schroeder and Gibson, J. Comp. Phys. (2007)
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Understanding Failures In
Petascale Computers
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Figure 5. Effective application utilization over time.

Schroeder and Gibson, J. Comp. Phys. (2007)
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Understanding Failures In
Petascale Computers
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Figure 6. The growth in bandwidth necessary
to make checkpoints cheap enough to compen-
sate for the increased failure rate due to growth
in number of sockets, assuming the number of
cores per socket grows by a factor of 2 every
18, 24 and 30 months, respectively.

Schroeder and Gibson, J. Comp. Phys. (2007)
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Current State of (US)
Petascale Systems

 Los Alamos Roadrunner (IBM) - 1.6 PFLOPS
— 16K Opteron cores
— 128K Cell SPEs
 LLNL BlueGene (IBM) - 1.0 PFLOPS
— 65K powerPC cores
« ORNL Jaguar (Cray XT5) - 1.0 PFLOPS
— 150K Opteron cores (Barcelona quads) *
* NASA Ames Pleiades (SGl Ice) - 0.6 PFLOPS
— 51K Xeon cores (Harpertown and Clovertown quads)
 NICS Kraken (Cray XT5) - 0.6 PFLOPS
— 66K Opteron cores (Barcelona quads) *
NCSA Blue Waters (IBM) - 10 PFLOPS (2011)
— 320K Power7 cores (octacores?)

* Being upgraded to Istanbul hexa-cores in 2009

/ﬁ_. Center of Ocean-Land-
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Kraken XT-5 at NICS

Courtesy of Pat Kovatch, NICS
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Likely Platform in 2015

22 micron feature size (Moore’s “law”)
Heterogeneous architecture

+ ~32 million heavyweight processors

« ~8 million light-weight processors (e.g. GPU)

« Two decades experience with communicating-sequential-
processes execution model and message-passing
programming model --> community is ill-prepared for new era of
heterogeneous multi-core platforms

16 PB memory
100 PFLOPSs peak performance

* 75% sustained on high-performance Linpack
 What percentage will fluid dynamics codes sustain?

22 MW power requirement

Courtesy Thomas Sterling, LSU
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Balancing Future Demands on Computing Power

EO, Data Assimilation

Computing
Resources
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New Comiing Paradigm

9. The unprecedented level of parallel computation
and heterogeneous computing platforms will
require new systems software, new algorithms and
substantial re-coding of existing climate models.

10. The massive scale of these computations will
also require new methods in workflow
management, data management, and visualization.



Static, Weighted Load Balancing Example:
Space Filling Curves for
CICE4 @ 1° on 20 processors

Large domains @ low latitudes

Small domains @ high latitudes

Courtesy John Dennis, NCAR
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0.1 degree benchmark simulation rate for POP2
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Example of highly scalable algorithms:
High Order Multiscale Modeling
Environment (HOMME)

» Sphere is decomposed into 6
iIdentical regions using a central
projection (Sadourny, 1972) with
equiangular grid (Rancic et al.,
1996).

» Avoids pole problems, quasi-
uniform. g

[~
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TAA AN

171777
LIERE!
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* Non-orthogonal curvilinear
coordinate system with identical z
metric terms

D[] (Y Y Y N
.B5 82 1.00

Ne=16 Cube Sphere
Showing degree of
non-uniformity
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Today, scalable dycores can’t break
1 simulated year per day even at 12.5 km...

Full CAM Physics/HOMME Dycore on Blue Gene/L
Parallel I/O library used for physics aerosol input and input data
(work COULD NOT have been done without Parallel 10)
Work underway to couple to other CCSM components

CAM-HOMME Aqua-planet runs

10
5 years/day
_10° . 1 year/day
a
&
(1]
i
0
E
m o
107"}
—e—BGL 0.5 degree |
—e— BGL 0.25 degree
—21 BGL 0.125 degree
10
10° 10° 10°
Number CPUs Courtesy Mark Taylor, SNL
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The Dynamical Core Ain’t Everything ...

CCSM4 architecture (CPL7)
Sequential Layout | Hybrid Sequential/Concurrent Layout

[ CPL(regriccing, merging) j'[ oL ]

Courtesy Mariana Vertenstein, NCAR
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Performance: PFSH (081219-100211) on 5844 procs [franklin]
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Courtesy John Dennis, NCAR

/ﬁq Center of Ocean-Land-
m"'Atmosphere Studies Jim Kinter - ICTP High Resolution Climate Modeling Workshop - Trieste, Italy - 13 August 2009



PetaApps

NSF PetaApps proposal funded - three-year research and development
effort, aimed at enabling a broad climate science capability for petascale
systems
* Interactive ensembles using CCSM/CPL7
* Incorporate and examine use of PGAS language (Titanium) in CCSM

s . .
Driver Interactive ensembles wiill
be used to understand
~ how oceanic and
( atmospheric weather
C o A noise i?n acts climate
Q CAM|| cCAM|| cAM|| cAM >€ Imp
= variability
+
&
CLM Titanium will be used in the
) ” flux coupler to examine
( CICE b impact of PGAS language
y approach to performance and
MR AN memory footprint
>
processors

Courtesy Mariana Vertenstein, NCAR

/H"ﬁ—‘—— Center of Ocean-Land-
GCOT,AAtmosphere Studies Jim Kinter - ICTP High Resolution Climate Modeling Workshop - Trieste, Italy - 13 August 2009



Global 1-kmiModel -
A Simple How-To Guide

* Objective: Global, atmospheric dycore (100 levels) simulating 1 yr per wallclock-day
(satisfying CFL)

* Flops: Need 6.37 PFLOPS sustained for 1 km resolution

— Fluid codes on microprocessor-based computers get 5% of peak (e.g. 1 GFLOPS per core on
IBM Power6)

— Need ~6 million processors (assuming quite optimistic scaling) in 180X180X180 torus topology
— Power requirement: 200-300 MW
« Communications: Need link bandwidths ~100 GB/sec = 10X Cray XT5 link bandwidth
— ~510M horizontal grid points; patch-size 9x9x100 per core for 6 million cores
— For 10 prognostic variables, 35 MB/sec/patch keeps up with 1 Gflops per core, assuming
overlapping communications. Without overlapping communications, need 10-20X = 350-700
MB/sec/patch.
- Data Storage: 100 sim-years = 1 exabyte generated in 100 days
— Need high levels of data management parallelism
— Visualization requires sophisticated data compression and subsetting techniques.
— Other multipliers: ensembles, non-atmospheric components, ...

Courtesy Rich Loft, NCAR
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Upshot ...

To do 1 km modeling at 1 year per day in 2009 would
require at least a 6 million core machine and 200 MW.

That Iis beyond current engineering capability
— Processor speed is stuck
— Amdahl’'s Law is a formidable barrier
— Mean time between failures goes like 1/N for N components
— How long does it take to synchronize 10 million threads?

Dynamical timestep goes like N1
— CFL is merciless

— The cost of (subcycled) dynamics relative to physics increases
with resolution (N)

+ e.g. if dynamics takes 20% at 25 km it takes 86% of the time at 1
km

The amount of data produced is O(exabytes) and
vastly exceeds the capabilities of serial postprocessing
systems to analyze Cortesy Rich Loft, NCAR
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The Good News ...

« Todo 20 km modeling at 1 year per day would require
a dedicated machine with ~15,000 cores

« That is within reach of current engineering capability

« Todo aglobal change run at 20 km, for which 5
years per day would be a more reasonable throughput
requirement, it is probably necessary to have a
dedicated machine with ~100,000 cores

« Scaling will be a challenge on current architectures, but
Blue Waters may rise to this challenge

=—— Center of Ocean-Land-
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Algorithmic Acceleration is Important:

The History of MHD Simulations

Magnetic Fusion Energl};: “Effective speed” increases
ar

came from both faster

dware and improved algorithms
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Trade-offs In Numerical Properties

Desired Properties Issues
« Local and global « Conservation schemes force
conservation specific PE formulations
« High order accuracy « High order accuracy conflicts with
. Computational efficiency computational efficiency and
— Flops per unit space-time monotonicity (Gudonov)
volume
* Geometric properties « Non local/irregular communication
— Flexibility and memory access patterns of
— Uniformity SLT, AMR, etc.

« Non-oscillatory advection -

monotonicity « Solver non-locality (e.g. of inner

* High scalability products) conflicts with scalability.

Courtesy Rich Loft, NCAR
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Existing computers have

high penalties for non-locality
HPC Challenge Benchmarks

HPL GFFT
System Achieved Affiliation System Achieved Affiliation
(TFLOPS) (TELOPS)
Cray XT5 - ORNL IBMBG/P  5.080 ANL
IBMBG/L  259.2 LLNL Cray XT3  2.870 SNL

IBM BG/P  191.3 ANL Cray XT5 - ORNL

Best HPL to Best FFT Ratio: 177.6!

=—— Center of Ocean-Land-
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Computational Intensity (ClI)

« Compute Intensity:

Cl = Total Operations/(Input + Output data)
 GFLOPS = CI*Bandwidth
« Bandwidth expensive, flops cheap

* The higher the ClI, the better we're able to
exploit this state of affairs

Courtesy Rich Loft, NCAR
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NASA High-End Computing (HEC) Program Study
NASA Goddard, July 24, 2008

Presented at 2008 International Supercomputing Conference (ISC '08), June 18-20, Dresden, Germany.
Study lead: Shujia Zhou, Reference: http.//www.hec.nasa.govinews/features/2008/cell.074208.html

*  Workload: Solar Radiation component from Goddard Earth 4300

Observing System Model, Version 5 (GEOS-5) — 20% of
GEOS-5 computing time.
v Computationally intensive & 110 time smaller than computation tin
v Relatively small code size (-=2,000 Fortran lines)
v Werical column data allowed for independent computation, Itanium2 Fortran
reducing communication W Demgsey Fortran
B Woodcrest Fartran
. Fur[ing BCel C
v Ported code to C. Note: IBM XL Fortran compiler for Cell is nt
available
b gdp%ipg Direct Memory Access library calls to communicate with
5.
v Determine best mapping acrass 8 SPE's per CellB.E. processor .
12 56 512

*  Currently working towards axplniting the Cell Fortran compiler: 1024
with a hybrid version of the solar radiation component.

g

g

5

Number of Columns Per Second
= P
g &

g

Numiber of Columns
*  Future work...
v GEOS-5 atmaﬂ::heﬁc madel component for turbulence, moisture, Cell was ...
chemistry, and other processes, which collectively take about 50 » 6.76x faster than Intel Xeon Woodcrest (2.66 GHz)
percent of GEOS-5 computing time. » 8.91x faster than Intel Xeon Dempsey (3.2 GHz)

v More sophisticated models, including cloud-resolving models — . B
requiring more than 10x computing power 9.85x faster than Intel Itanium2 (1.5 GHz)

QS22 is 3.73% faster than QS20 data values above.

Courtesy Kent Winchell, IBM
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* Two standards evolving from different
sides of the market

CPU SPE GPU

Courtesy Kent Winchell, IBM
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Different approaches to exploit hybrid

APGAS
annotations

No change tp

customer cod Single-thread

program

systems

OpenMP

OpenMP for
accelerators

APGAS
OpenCL languages (X10,
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Rewrite

Parallel pfogram
languages

Annotated
program

\
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Compilers
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e,
Parallel

Language
Compiler

>
Directives + )
N

Speculative
threads

Hardware Innovations
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Where’s the tipping point for
Accelerators: Cell and GPU’s?

10000
——NVIDIA GPU ——Cell BE
= =NVIDIA GPU (peak) - =Cell BE (peak)
1000
)
- [ e SO < (SR A T
)
Q
5 \GPU Is easlier to program, but Cl is big
'15: 100
&
Cl small, but Cell is difficult to program
10 -

6 12 18 24 36 48 72 96 144 180 300 420 600 9S00 1200 1800 2400 3000 4800 6000

Computational Intensity (Flop/byte) Courtesy Rich Loft, NCAR
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Example - Super-parameterization:
An intermediate step in the quest for a
cloud-system-resolving AGCM

e Super-parameterization is embarrassingly parallel
but extremely expensive (~150x traditional physics)

« The computational cost of the following simulations
are approximately the same:

— A millennium-long simulation using a traditional
climate model.

— A few years-long simulation using a traditional
climate model with CRCP (MMF or SP)

— A day-long simulation of a cloud-system-resolving
AGCM O(1 km)

Courtesy Rich Loft, NCAR
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Running
“Super Parameterization” on an
Accelerator Cluster

AtPatchhof_ Cloud Models

mospheric

Colunens M \\‘\‘
/l\ /0O Bus A

EENEE
HEEN
EEEE
EENE

Conventional
Core

Accelerator Card

Courtesy Rich Loft, NCAR
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Climate change is most difficult and important problem

Scientific consensus: humans contribute to climate change

World, urgently engaged in global mitigation and regional adaptation strategies, needs detailed regional information
IPCC AR4: considerable uncertainty in predictions of magnitude of global change

... and uncertainties in regional climate are even bigger

Climate prediction is very computationally demanding

Climate spatial scales span 10 decades, but current models resolve less than 4 decades

Within 6 years, peak capability of 100 petaflops, 107 computing units

Parallel computation means new software, algorithms and models

... and new methods in workflow management, data management, and visualization



Investments Required In:

* People and infrastructure for...
— Algorithm Research — AMR, solvers..
— Software Engineering — DAV tools, frameworks

— Computational Science Research — scalability, fault
tolerance

* Architectural innovations including...

— Global reduction networks

— Robust I/O subsystems

— Tighter integration of accelerators and pprocs
 New modeling schemes, such as...

— pairing sub-grid-scale models with accelerators

Courtesy Rich Loft, NCAR
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Working on Climate Scalability
Requires Big Interdisciplinary Teams

« Contributors:  Funding:
D. Bader (ORNL) S. Mishra (NCAR) — DOE-BER CCPP Program Grant
D. Bailey (NCAR) S. Peacock (NCAR) « DE-FC03-97ER62402
C. Bitz (U Washington) K. Lindsay (NCAR) + DE-PS02-07ER07-06
F. Bryan (NCAR) W. Lipscomb (LANL) « DE-FC02-07ER64340
T. Craig (NCAR) R. Loy (ANL) + B&R KP1206000
A. St. Cyr (NCAR) J. Michalakes (NCAR) — DOE-ASCR
J. Dennis (NCAR) A. Mirin (LLNL) « B&R KJ0101030
J. Edwards (IBM) M. Maltrud (LANL) — NSF Cooperative Grant NSF0O1
B. Fox-Kemper (MIT,CU) J. McClean (LLNL) — NSF PetaApps Award
E. Hunke (LANL) R. Nair (NCAR) o ; .
B. Kadlec (CU) M. Norman (NCSU) Computer Time:
D. Ivanova (LLNL) T. Qian (NCAR) — Blue Genel/L time:
E. Jedlicka (ANL) C. Stan (COLA) NSF MRI Grant
E. Jessup (CU) M. Taylor (SNL) EC.AR :
R. Jacob (ANL) H. Tufo (NCAR) niversity of Colorado
P. Jones (LANL) M. Vertenstein (NCAR) IBM (SUR) program
J, Kinter (COLA) P. Worley (ORNL) BGW Consortium Days
M. Zhang (SUNYSB) LL[\I]BLM research (Watson)
Stony Brook & BNL
— CRAY XT time:
NICS/ORNL
NERSC
Sandia
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Scale of the Enterprise

« Computational Power — Petaflops/sec
« Data Volumes — Petes Exabytes

« Model re-coding for massively parallel architectures — 100
dedicated person-years

« Climate data assimilation, initialisation and reanalysis — 100
dedicated person-years

« Sufficient expertise in climate and Earth system processes

Challenge will be securing critical capability
In all these areas.

Is it beyond the capacity of a single country?

Is it time to tackle this together and avoid duplication of
effort?

Courtesy of Julia Slingo
World Modeling Summit, May 2008, Reading, UK

=—— Center of Ocean-Land-

GCOT,AAtmosphere Studies Jim Kinter - ICTP High Resolution Climate Modeling Workshop - Trieste, Italy - 13 August 2009



Summary .

« Considerable progress in weather & climate modeling over
the past 45 years along with a 10°-fold increase in
computing

 Breakthroughs in the next decade will require huge
increases in model resolution & complexity — 103* X
Increase in computing capability, along with work on entire
spectrum of issues in high-end computing and model &
code development

« We are not currently organized as a community to step up
to this challenge

 This problem may be larger than any single nation can
address ... international cooperation is required to
accelerate progress and productively use petascale
computing for climate prediction.
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